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SUMMARY

Temporally organized reactivation of experiences
during awake immobility periods is thought to under-
lie cognitive processes like planning and evaluation.
While replay of trajectories is well established for the
hippocampus, it is unclear whether the medial pre-
frontal cortex (mPFC) can reactivate sequential
behavioral experiences in the awake state to support
task execution. We simultaneously recorded from
hippocampal and mPFC principal neurons in rats
performing a mPFC-dependent rule-switching task
on a plus maze. We found that mPFC neuronal activ-
ity encoded relative positions between the start and
goal. During awake immobility periods, the mPFC re-
played temporally organized sequences of these
generalized positions, resembling entire spatial tra-
jectories. The occurrence of mPFC trajectory replay
positively correlated with rule-switching perfor-
mance. However, hippocampal and mPFC trajectory
replay occurred independently, indicating different
functions. These results demonstrate that the
mPFC can replay ordered activity patterns repre-
senting generalized locations and suggest that
mPFC replay might have a role in flexible behavior.

INTRODUCTION

Complex cognitive tasks usually incorporate multiple task

stages and, as such, require the involvement of various brain

areas. The brain areas involved in these tasks might coordinate

their computations andwork in concert or be required at different

points in time and thus not show precise temporal coordination.

Flexibly adapting the behavioral strategy following a change in a

rule depends on the medial prefrontal cortex (mPFC). This de-

pendency has been first described for humans and then also

for rats, where mPFC lesions result in inflexibility and deficits in

rule-switching performance (Floresco et al., 2008; Guise and

Shapiro, 2017; Milner, 1963; Ragozzino et al., 1999). Spatial nav-

igation and decision making, on the other hand, are functions

largely attributed to the hippocampus (Morris et al., 1982). A
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task that combines the need for spatial navigation and the ability

to flexibly shift strategies is the rule-switching task on the

plus maze.

Spatially selective cells in the hippocampus, called place cells,

are the substrate for the cognitive map required for spatial nav-

igation (O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel,

1978). Furthermore, the prominent role of the hippocampus in

spatial functions has been partially attributed to replay, the reac-

tivation of place cell activity patterns representing distant places

or even recapitulating coherent trajectories (Foster and Wilson,

2006; Lee and Wilson, 2002; Nádasdy et al., 1999; Wilson and

McNaughton, 1994). Such replay was first observed in sleep,

where it is believed to play a role in memory consolidation (Wil-

son and McNaughton, 1994). Later, similar replay was seen

during waking immobility periods, which, due to their temporal

proximity to behavioral experience, suggested a function for

replay in the solving of tasks. Indeed, awake replay in the hippo-

campus is thought to underlie the evaluation of past and future

choices (Pfeiffer and Foster, 2013; Singer et al., 2013; Xu et al.,

2019), and inhibiting hippocampal sharp wave ripples (SWRs)

(periods of enhanced replay) in awake animals results in deficits

in spatial task performance (Jadhav et al., 2012).

Similar to the hippocampus, replay in the mPFC was first

observed in sleep, where task-induced sequential neural activity

patterns become reactivated in subsequent rest periods (Euston

et al., 2007). Furthermore, during sleep after a rule switch, there

is more mPFC replay of waking neuronal activity patterns (Peyr-

ache et al., 2009), raising the possibility that mPFC replay may

strengthen knowledge for future rule switching. However, it is

unclear so far whether the mPFC can replay sequences in the

awake state and what information the reactivated neuronal pat-

terns code for in rule switching.

Although the rule-switching task on the plus maze engages

both the mPFC and hippocampus, it is not immediately obvious

how replay in these two areas will relate to each other. Replay in

the mPFC and hippocampus might occur at similar times, since

the synchronization of oscillatory patterns increases between

these two areas during rule switching (Benchenane et al.,

2010). Moreover, while animals performed spatial tasks, the re-

activation of correlated firing patterns ofmPFC and hippocampal

cell pairs has been demonstrated (Jadhav et al., 2016; Tang

et al., 2017; Yu et al., 2018). However, mPFC and hippocampal

replay in the plus-maze task might also occur independently,

since the hippocampus, unlike the mPFC, has not been shown
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Figure 1. HPC and mPFC Neural Recordings during a Rule-Switching Task

(A) Tetrodes targeted the dorsal CA1 (unilaterally) and the prelimbic area of the mPFC (bilaterally). Inset shows an entire coronal brain slice with the box indicating

the location of the magnified region. Red arrows indicate tetrode tips. Scale bar denotes 1 mm.

(B) Rats had to switch between a spatial- and light-guided rule on a plusmaze. During the spatial rule, rats had to ignore the light cue, while in the light-guided task,

rats had to follow it.

(C) Daily behavioral protocol comprising a pre-switch, switching, and post-switch block.

(D) Percentage of errors in 15 trials before rule change, 15 trials after rule change, and in the last 15 trials. A rule change lead to significantly more error trials

(**p < 0.01, Wilcoxon signed-rank test). Error bars show standard error of the mean (SEM).

See also Figure S1.
to be required for rule switching. Therefore, replay in the mPFC

during the rule-switching taskmight be involved in functions spe-

cific to that brain area.

Here, we examined the complementary roles of the hippocam-

pus and mPFC in rule switching. The spatial coding of neuronal

populations in these regions was compared. Moreover, we

tested the role of mPFC replay in rule switching by investigating

its content and relationship to behavior and by examining its

coordination to hippocampal replay. In these analyses we

specifically tested whether the mPFC can reactivate extended

experiences, beyond cell pair measures, and with a behavioral

relevance.

RESULTS

With 32-tetrode microdrives, we recorded from a total of 817

mPFC and 1,025 dorsal hippocampus CA1 (HPC) putative prin-

cipal cells across 13 experimental sessions (averaging 63 mPFC

and 78 HPC principal cells per session) (Figures 1A, S1A, and

S1B). Four rats were trained on a rule-switching task on a plus

maze where reward had to be collected following a spatial- or

light-guided strategy (Figures 1B, S1C, and S1D). At the begin-

ning of every trial, the animal was placed in one of the two start

arms (north or south) to then approach the maze center and

collect a reward in one of the two goal arms (east or west). On

every recording day, the animal had to initially collect rewards

based on the previous day’s last rule (pre-switch) until the rule

was changed unannounced. The animal had to then abandon
the old rule, and through trial and error, switch to the new rule

(switching) and successfully perform new rule trials (post-switch)

(Figure 1C). Once the animal performed five consecutive correct

trials after rule change, the post-switch block started from the

third correct trial (i.e., beginning of good performance) and

ended when a certain number of correct trials was reached.

The unannounced rule change lead to animals making signifi-

cantly more errors (15 trials before versus 15 trials after rule

change: p = 0.0014, Wilcoxon signed-rank test; Figure 1D), but

animals successfully updated to the new strategy in later trials

(first 15 trials after rule change versus last 15 trials: p = 0.0014;

Figure 1D).

Generalized Spatial Coding in the mPFC
We constructed spatial rate maps and, similar to previous

studies, found that mPFC firing is related to locations in the

arms of the plus maze (Fujisawa et al., 2008; Hok et al., 2005;

Zielinski et al., 2019) (Figures 2A and S2A). However, it also

became apparent that mPFC cells often had multiple firing fields

and that these fields frequently occupied symmetrical locations

on opposite arms of the maze, thereby generalizing between

the two start or the two goal arms (Figure 2B). The symmetric

coding properties of the mPFC were quantified with population

vector correlations between the two start arms and between

the two goal arms (Figure 2C). The average population vector

correlation for the mPFC was 0.89 for the start arms and

0.92 for the goal arms, indicating that the mPFC population

had similar spatial firing patterns in both start and goal arms.
Neuron 106, 154–165, April 8, 2020 155
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Figure 2. Coding of the Relative Spatial Position in the mPFC

(A) Linearized rate maps of one of the four trajectories (north to east) for HPC and mPFC cells that were simultaneously recorded during one session. Rate maps

were normalized relative to the mean firing rate of the respective cell (Z scored) and sorted based on the position of a cell’s peak firing rate.

(B) Rate maps from example mPFC cells illustrating their symmetric spatial firing and generalization between the two start and two goal arms. (i) Cells that fire in a

similar position in both start arms. (ii) Cells that fire in a similar position in both start and both goal arms. (iii) Cells that fire in a similar position in both goal arms.

(C) Population vector correlations between the south and north and between the east and west arms quantifying their similarity. Error bars show SEM.

(D) Mean decoding error for Bayesian positional decoding performed with 2D or linearized 1D rate maps. For the mPFC, decoding performed with 1D rate maps

led to a strong improvement in decoding precision. Every session is represented as a black line, and the horizontal dashed line indicates the chance level

decoding error. Error bars show SEM (n.s., non significant, **p < 0.01, Wilcoxon signed-rank test).

(E) 1D Bayesian decoding of HPC or mPFC spiking for example trials. For every time window of 0.512 ms, position probabilities are plotted with the animal’s real

position overlaid (blue line).

(F) Confusion matrix for the HPC and mPFC cell population, where the diagonal shows correspondence between the decoded and real positions.

See also Figure S2.
On the other hand, the two start and two goal arm firing patterns

of the HPC ensemble were distinct (average population vector

correlation, start arms: 0.07, goal arms: 0.06).

To further investigate whether themPFC preferentially exhibits

spatially discrete or rather generalized spatial firing, we applied

the Bayesian method to decode the position of the animal during

running epochs on the basis of mPFC spiking. We observed a

strong improvement in decoding precision when the animal’s

relative position between start and goal was decoded (‘‘1D

decoding’’) instead of requiring the decoding to distinguish

between the different pairs of start and goal arms (‘‘2D decod-

ing’’; mean decoding error: 2D = 46 ± 3 cm; 1D = 16 ± 3 cm;

p = 0.0015, Wilcoxon signed-rank test; Figure 2D). 1D decoding

was also performed based on HPC spiking; however, it yielded a

decoding precision similar to that of 2D decoding (mean decod-
156 Neuron 106, 154–165, April 8, 2020
ing error: 2D = 14 ± 1 cm; 1D = 14 ± 1 cm; p = 0.5, Wilcoxon

signed-rank test; Figure 2D). Precision of 1D decoding per-

formed on mPFC spiking was comparable to that performed

on HPC spiking (p = 0.25, Wilcoxon signed-rank test), although

the number of spikes required to decode the position with a

mean decoding error of less than 30 cm was lower for the HPC

(p = 0.0014, Wilcoxon signed-rank test; Figure S2B). 1D decod-

ing of mPFC and HPC spiking corresponded with the real linear-

ized position of the animal (Figures 2E and 2F).

The low 2D decoding performance for the mPFC did not result

from the possibility that the mPFC differentiates between the

correct and error arm; the mPFC population vectors constructed

from only correct or error trials were highly similar (Figure S2Ci),

and decoding the 2D location of correct trials with rate maps

constructed from only correct trials did not improve decoding



performance (p = 0.92, Wilcoxon signed-rank test; Figure S2Cii).

Furthermore, only for 59%of all trials could the trial outcome (i.e.,

correct or error) be decoded from mPFC spiking in the goal arm

(Figure S2Ciii).

Similar to the HPC, mPFC 1D decoding error decreased with

windows of increasing number of spikes, windows with

increasing number of firing cells, and windows of increasing

time lengths (Figure S2D). For the HPC and mPFC, the decoding

errors in the pre-switch, switching, and post-switch blocks did

not differ (HPC: p = 0.16, mPFC: p = 0.63, Kruskal-Wallis test;

Figure S2E). It is important to note that although the mPFC pre-

dominantly coded for generalized positions, it did also show

some allocentric spatial selectivity; 2D decoding with the

mPFC population was nevertheless better than chance (Fig-

ure 2D, horizontal dashed line), and when using a Bayesian

method to differentiate between the two goal arms, the goal

arm identity could be distinguished with mPFC population firing

at the goal arm in 76% of all trials (Figure S2F).

In summary, the improved precision with 1D decoding indi-

cates that the mPFC, unlike the HPC, holds less information

about discrete places. The highly similar firing patterns of the

mPFC in the two start and the two goal arms suggests that the

mPFC generalizes between places with similar task context.

Due to the low mPFC 2D decoding performance and symmetric

firing of mPFC cells, subsequent analyses were performed with

1D linearized rate maps where the two start and two goal arms

are collapsed onto one linear map. For consistency, analyses

on HPC spiking were also performed with linearized rate maps.

Non-local Positional Encoding in the mPFC
We next investigated whether the mPFC can activate non-local

spatial locations (i.e., spatial locations not bound to the current

position of the animal). Based on mPFC population firing, we de-

coded the position of the animal not only during running but also

immobility periods (Figures S3D and S3E). Rate maps were

computed using all trials except for the one on which positional

decoding was performed and without speed filtering. This pro-

cedure ensured that any non-local position decoded from

mPFC spiking recorded during immobility did not result from a

lack of encoding information during immobility. We found that

the encoded position can be highly non-local (Mashhoori et al.,

2018), and that the majority of non-local events in the mPFC

occurred during periods of low speed (Figure S3F). We observed

two peaks in the distribution of decoding errors during immo-

bility, with the highest peak at zero and a second, smaller one

at�150 cmaway from the real location of the animal while immo-

bile (Figure S3E). Also for the HPC, the majority of non-local

events occurred during immobility (Figures S3A–S3C).

Replay of Trajectories in the mPFC
Hippocampal replay can recapitulate entire past or future trajec-

tories that serves cognitive functions, such as memory consoli-

dation and future planning (Csicsvari et al., 2007; Davidson

et al., 2009; Diba and Buzsáki, 2007; Foster and Wilson, 2006).

Experimental evidence demonstrated that extended replay is

not limited to the hippocampus and can also be observed in

other cortical areas (Ji and Wilson, 2007; O’Neill et al., 2017).

Since the mPFC represented locations away from the animal’s
current position during immobility, we tested whether the

mPFC links individual non-local positions to an ordered

sequence of locations, thereby recapitulating an extended

behavioral experience. For each session and separately for

HPC and mPFC, we selected the number of spikes that allowed

us to decode the position of the animal during running with an

average error lower than 30 cm. Each immobility period was

then divided into these spiking-windows that contained the

same number of spikes and did not overlap (Stella et al., 2019).

The distribution of spiking-window lengths was especially broad

for the mPFC, indicating that compared to the HPC, mPFC pop-

ulation activity during replay is less synchronized and exhibits a

weaker transient increase in activity (Figure S4A). Using the

Bayesian position decoding algorithm and rate maps computed

from spiking activity during running periods, a normalized likeli-

hood function on the binned linearized maze positions was

computed for each spiking-window. For the HPC and mPFC,

the decoding confidence of a spiking-window (i.e., maximum

likelihood divided by the sum of all likelihoods) only minimally,

albeit significantly, decreased with spiking-window size,

showing that even positions decoded from larger spiking-win-

dows tend to point to similarly defined spatial locations (HPC:

p = 0.0016, mPFC: p = 0.0009, Kruskal-Wallis test; Figure S4B).

Then, for every four consecutive spiking-windows, we computed

a trajectory score, which was based on the decoding probability

between decoded positions (decoding probability score; ranging

between 0 [least optimal] and 1 [most optimal]) and the smooth-

ness of the trajectory (smoothness score; ranging between

0 [most optimal] and 1 [least optimal]). Both scores were tested

against chance using a place field rotation shuffling procedure.

We observed that the decoding probability score distributions

were significantly different, with scores closer to zero for shuffled

events (HPC and mPFC: p < 0.00001, two-sample Kolmogorov-

Smirnov [KS] test; Figure 3A). The difference remained signifi-

cant when taking nonoverlapping four-spiking-window events

(HPC and mPFC: p < 0.00001, two-sample KS test; Figure S4C).

The smoothness score distributions were also significantly

different and were higher for the shuffled events (HPC and

mPFC: p < 0.00001, two-sample KS test; Figure 3B). Also for

the smoothness score, the difference remained significant

when taking nonoverlapping four-spiking-window events (HPC

and mPFC: p < 0.00001, two-sample KS test; Figure S4D). We

unified the two measures by subtracting the smoothness score

from the decoding probability score, yielding the trajectory

score, a real number that ranges between �1 (least optimal)

and 1 (most optimal). To identify significant trajectory events

that were then used for subsequent analyses, we selected all

the four-spiking-window events that had a trajectory score

above the 95th percentile of their own shuffled distribution. Since

replayed trajectories can be longer than four spiking-windows,

we incrementally extended significant four-window events. As

a result, 58% and 60% of the considered five-window events

in the HPC and mPFC, respectively, passed their own shuffling

(HPC and mPFC: p < 0.00001, binomial test). The same proced-

ure was then performed with the extended event.

As a control, to verify the validity of longer than four-window

events, we computed the scores for five- and six-spiking-win-

dow events, with overlapping windows as described above for
Neuron 106, 154–165, April 8, 2020 157
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Figure 3. Replay of Trajectories in the mPFC during Immobility

Trajectory replay analysis was performed on windows with a fixed number of spikes (i.e., spiking-window), and the quality of linear replay was assessed with the

decoding probability and smoothness scores.

(A) The cumulative distribution of decoding probability scores computed from real and place field-rotated shuffled data. For the HPC and mPFC, the decoding

probability scores of the real data were significantly higher than of the shuffled data (****p < 0.00001, two-sample KS test).

(B) The cumulative distribution of smoothness scores computed from real and place field-rotated shuffled data. For the HPC and mPFC, the smoothness scores

of the real data were significantly lower than of the shuffled data (****p < 0.00001, two-sample KS test).

(C) Examples of significant trajectory replay events in the HPC and mPFC for all four animals (rows). Decoding was performed on spiking-windows, and the

position probabilities of a spiking-window were normalized by the maximum probability. Only significant trajectory events were used for subsequent analyses.

(D) Distribution of replaying speeds of trajectory replay events detected in the HPC and mPFC. One criterion for an event replaying a trajectory was a reactivation

speed of above 20 cm/s. Positive and negative speeds indicate forward and reverse playing trajectories, respectively.

(E) Distribution of replay durations of trajectory replay events detected in the HPC and mPFC.

(F) Spiking of spatially selective mPFC cells (n = 23 cells, spatial information >0.1, sparsity <0.1) during an example trial. The black line denotes the real position of

the animal and the gray shaded area an event where trajectory replay has been detected. The dashed box zooms into the trajectory replay event. Note the change

in network activity (i.e., increase or decrease in firing rate of cells) during the trajectory replay event.

(G) Cross-correlation of trajectory replay events detected in the HPC and mPFC. The cross-correlation did not show any peaks and overlapped with that of the

shuffled data, indicating that trajectory replay events in these two areas generally did not co-occur. Shaded areas show SEM.

See also Figures S3–S5.
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Figure 4. Network Activity during Trajectory Replay Events

(A) The population firing of HPC (top) andmPFC (bottom) cells during replay events in their respective area. The Z-scored population firing during the replay event

was centered on the replay event spiking-window with the maximum firing rate. Black lines show SEM.

(B) The firing rate of HPC and mPFC cells increased during replay events in the respective area, relative to randomly selected immobility periods.

(C) The power in the hippocampal SWR band (150–250 Hz) was significantly higher during HPC and mPFC replay events compared to randomly selected

immobility periods.

(D) The percentage of replay events that co-occurred with a hippocampal SWR event. SWRs were more often present during HPC and mPFC replay events than

during randomly selected immobility periods.

(E) SWR power in the mPFC (100–150 Hz) was not different during mPFC replay events compared to randomly selected immobility events.

(F) Gamma (30–90 Hz) power during replay events. Hippocampal gamma power was increased during HPC replay events, while mPFC gamma power was not

different during mPFC replay events. Error bars show SEM (n.s., non significant, *p < 0.05, **p < 0.01, ***p < 0.001, Wilcoxon signed-rank test).
four spiking-windows, and observed that the distributions of

scores were still significantly different from chance (decoding

probability score: HPC and mPFC: all p < 0.00001; smoothness

score: HPC and mPFC, all p < 0.00001; two-sample KS test;

Figures S4E–S4H). Finally, when adding a fifth window to a sig-

nificant four-window event, scores were also significantly

different from those of the shuffled distribution in which only

the fifth window was decoded using shuffled rate maps (decod-

ing probability score: HPC and mPFC, p < 0.00001; smoothness

score: HPC and mPFC: p < 0.00001, two-sample KS test; Fig-

ures S4I and S4J).

mPFC and HPC Trajectory Replay Events Occur
Independently
As a result, 9% of the time spent immobile showed significant

mPFC replay of trajectories. Selected mPFC events resembled

trajectories typically decoded from the HPC, and both showed

forward and reverse playing trajectories (Figures 3C and 3D).

The distribution of trajectory speeds was wider in the HPC

than mPFC (95th confidence intervals [cm/s]: HPC, [�491,

452]; mPFC, [�186, 191]; Figure 3D) and the duration of trajec-

tory replay events in mPFC was longer than of those in the

HPC (median: mPFC, 0.74 s; HPC, 0.33 s; p < 0.00001, Mann-

Whitney U test; Figure 3E). Trajectory replay speed in both areas
was associated with increased population firing rate in the same

area (HPCandmPFC: p< 0.0001, one-sample t test; Figure S5A).

During mPFC trajectory replay events, mPFC cells start or stop

firing, similar to the sudden change in network activity typically

seen for HPC replay events (Figure 3F). Finally, cross-correlating

the occurrence of significant trajectory replay events in the HPC

with those in the mPFC showed that trajectory replay in these

two areas was independent of each other (Figure 3G). On

average, only 5% of all trajectory events in the mPFC occurred

simultaneously with trajectory events in the HPC.

Robustness of mPFC Trajectory Replay Events
In addition to the decoding probability and smoothness scores,

we used further measures to detect significant trajectory replay

events (Davidson et al., 2009; Gupta et al., 2010). Significant

trajectory events that were detected with themethods described

above were taken, and, with the approaches from the Davidson

et al. and Gupta et al. studies, scores were computed over these

events. For both methods, replay events in the HPC and mPFC

had larger scores than the shuffled data (all p < 0.00001, two-

sample KS test; Figures S5B and S5C). This demonstrates that

awake trajectory replay in the mPFC can even be detected

with other replay quality measures. Furthermore, decoding

positions with rate maps of smaller bin sizes (i.e., 5 cm and
Neuron 106, 154–165, April 8, 2020 159
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Figure 5. mPFC and HPC Trajectory Replay

Oppositely Correlate with Rule-Switching

Performance

(A) For every session, a mean trajectory replay rate

was calculated over switching block trials. mPFC

trajectory replay rate at the maze center negatively

correlated with number of trials required to switch to

the new rule and hence positively correlated with

rule-switching performance. Each dot denotes one

session and sessions with no trajectory replay for a

condition were excluded. Inset shows mean r value

obtained from 100 correlations of bootstrapped

data.

(B) At the goal, the trajectory replay rate in the HPC

positively correlated with number of trials required

to switch to the new rule and therefore negatively

correlated with rule-switching performance. Con-

versely, also at the goal, the mPFC trajectory replay

rate negatively correlated with number of trials

required to switch.

(C) Correlating number of trials to switch with other

aspects of behavior. (i) The number of immobility

periods per trial was not correlated with the number

of trials required to switch. (ii) The mean running

velocity in a trial was not correlated with the number

of trials required to switch.

(D) SWR events were detected during immobility

periods and the SWR number in a trial normalized by

the immobility during that particular trial. The mean

SWR event rate per trial was computed. (i) The SWR

event rate at the center showed a trend toward

significantly correlating with number of trials

required to switch (p = 0.05). (ii) The SWR event rate

at the goal positively correlated with the number of

trials required to switch. (Spearman’s rank-order

correlation was used for all correlations here.)

See also Figure S6.
2.5 cm) still resulted in events that had higher trajectory scores

than shuffled (all p < 0.00001, two-sample KS test; Figures

S5D and S5E). Finally, since previous replay studies used time

windows of a fixed length instead of the variable-length

spiking-window used here, we computed the trajectory scores

with windows of fixed time. Using fixed time windows resulted

in trajectory scores that were still significantly different from

scores of the shuffled distribution (all p < 0.00001, two-sample

KS test; Figure S5F).

We then constructed separate rate maps from spiking during

running and during immobility periods with trajectory replay

and without. Correlating these rate maps for every mPFC cell

showed that the running and immobility with trajectory replay

maps were significantly less similar than the running and immo-
160 Neuron 106, 154–165, April 8, 2020
bility without replay maps (p < 0.00001,

two-sample KS test). Furthermore, the

firing rates of mPFC cells during running

were positively correlated with the firing

during immobility with trajectory replay

(r = 0.90, p < 0.0001, Spearman rank-order

correlation). We therefore also observed

mPFC replay on a single-cell level, since

during replay, the same cells were active
as during running periods (Pavlides and Winson, 1989) and

because the firing location of cells could decouple from the cur-

rent location of the animal.

Trajectory Replays in the mPFC Co-occur with
HPC SWRs
We investigatedwhether replay eventswere associatedwith pop-

ulation-level responses. The population firing rate of mPFC neu-

rons peaked during mPFC replay events (Figure 4A), similar to

HPC population responses during HPC replay (Figure 4A). Then,

for every replay event, a random immobility period of the same

length was selected and the average firing rate computed for

each cell during replay and random immobility periods. For both

the HPC andmPFC, the firing rate of cells increased during replay
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Figure 6. A Role for mPFC Trajectory Replay

during Error Trials in Switching Performance

A mean trajectory replay rate was calculated over

switching and post-switch block trials.

(A) HPC, but not mPFC, trajectory replay rate in the

centerwas higher during correct trials than error trials.

(B) Trajectory replay rate at the goalwas higher during

error trials than correct trials for both the HPC and

mPFC.

(C) Separating trajectory replay in the center into

ending ahead (thus pointing toward the goal) and

ending behind (pointing toward the start) the animal,

showed that for the mPFC, ahead replay was

increased during error trials, while behind replay was

increased during correct trials. Ahead and behind

trajectory replay in the HPC did not seem to support

different functions, and both were increased during

correct trials. Error bars show SEM (n.s., non signifi-

cant, *p < 0.05, **p < 0.01,Wilcoxon signed-rank test,

Bonferroni-Holm correction).
events compared to the randomly selected baseline firing rate

(HPCandmPFC: p<0.001,Wilcoxonsigned-rank test; Figure 4B).

We then examined whether our detected trajectory replay

events co-occurred with awake hippocampal SWRs. Hippo-

campal SWR power was increased during HPC replay events

(p = 0.005, Wilcoxon signed-rank test; Figure 4C), and HPC

replay events co-occurred more often with hippocampal

SWRs than randomly selected immobility periods (p = 0.001,

Wilcoxon signed-rank test; Figure 4D). It is possible that low-

power SWRs were not detected, which could explain why not

all HPC replay events coincided with SWRs. We performed

the same analysis for mPFC replay events and also found an in-

crease in hippocampal SWR power (p = 0.001, Wilcoxon

signed-rank test; Figure 4C). Furthermore, 40% of mPFC replay

events co-occurred with hippocampal SWR events, which was

significantly higher than the co-occurrence of randomly

selected immobility events and SWRs (p = 0.02, Wilcoxon

signed-rank test; Figure 4D). Therefore, although mPFC replay

events were temporarily uncorrelated with our detected replay

events in the HPC, they nonetheless could co-occur with hip-

pocampal SWR activity. Considering that half of our HPC replay

events did not co-occur with SWRs and mPFC replay was

generally associated with SWRs, we cross-correlated the

occurrence of mPFC trajectory replay events with those HPC

events that co-occurred with SWRs. However, also here, the

cross-correlation did not indicate that trajectory events in the

HPC and mPFC are dependent (p = 1, Kruskal-Wallis test).
It has been reported that cortical areas

can also exhibit ripple frequency oscilla-

tions (Khodagholy et al., 2017). However,

we did not find differences in mPFC ripple

power (100–150 Hz) during replay and

random immobility periods (p = 0.12, Wil-

coxon signed-rank test; Figure 4E). Finally,

the power of hippocampal gamma fre-

quency oscillations (30–90 Hz) was slightly

increased during HPC replay events, while
gamma power in the mPFC did not change during mPFC replay

events (HPC: p = 0.002, mPFC: p = 0.7, Wilcoxon signed-rank

test; Figure 4F).

Trajectory Replay in the mPFC Correlates with
Performance
There is evidence that awake replay in the hippocampus sup-

ports spatial task performance (Jadhav et al., 2012; Singer

et al., 2013). To investigate whether awake trajectory replay in

the mPFC goes beyond a mere recapitulation of experience

and possibly supports the mPFC’s role in rule switching, we

studied the relationship of awake trajectory replay with rule-

switching performance. For every trial, the number of trajectory

replay events was divided by the immobility time to obtain the

rate of trajectory replay. Then, the mean trajectory rate in

the switching block was plotted against the number of trials

required to switch to the new rule. The trajectory replay rate in

the maze center for the HPC did not correlate with performance

(r = �0.5, p = 0.17, Spearman rank-order correlation; Figure 5A).

However, the rate of mPFC trajectory replay events, at both the

center and goal, negatively correlated with the number of trials

required to switch to the new rule and hence correlated positively

with performance (center: r = �0.76, p = 0.01, goal: r = �0.63,

p = 0.02, Spearman rank-order correlation; Figures 5A and 5B).

Conversely, HPC trajectory replay in the goal area positively

correlated with trials to switch and hence showed a negative cor-

relation with performance (r = 0.71, p = 0.009, Spearman rank-
Neuron 106, 154–165, April 8, 2020 161



order correlation; Figure 5B). In light of the correlation between

mPFC replay and switching performance, we investigated

whether the occurrence of a mPFC replay event at the goal re-

sulted in a higher likelihood of the next trial to be correct. How-

ever, the probability of the next trial to be correct did not differ

depending on whether there was mPFC replay at the goal or

not (p = 0.92, Wilcoxon signed-rank test; Figure S6A).

When significant trajectory events had to pass an additional

cell identity shuffling procedure, 85% and 87% of HPC and

mPFC events, respectively, were still significant (Figure S6B).

Furthermore, all the correlations between trajectory replay rate

and switching performance were maintained (Figures S6C and

S6D). We tested whether other behavioral aspects could explain

the correlation results. However, the number of trials required to

switch was not correlated with the number of immobility periods

per trial or the mean movement speed of the animal (immobility

periods: r = �0.15, p = 0.62, mean velocity: r = �0.25, p =

0.40, Spearman rank-order correlation; Figure 5C). Interestingly,

there was a positive correlation between the number of SWR

events per trial at the goal and trials required to switch (r =

0.63, p = 0.02, Spearman rank-order correlation; Figure 5D).

This result is in agreement with the positive correlation between

HPC trajectory replay rate at the goal and the number of trials

required to switch (Figure 5B).

Trajectory Replay and Trial Outcome
We then computed the mean trajectory rate separately for cor-

rect and error trials over all trials after the rule switch (i.e., trials

from the switching and post-switch block). The mPFC trajectory

replay event rate at the goal was higher in error than correct trials

(p = 0.009, Wilcoxon signed-rank test; Figure 6B). This result and

the positive correlation with performance provide support that

mPFC trajectory replay at the goal area during error trials has a

facilitating role in switching to the new rule. For the HPC, goal

trajectory replay was slightly increased in error trials (p =

0.016, Wilcoxon signed-rank test; Figure 6B). HPC trajectory

replay in the center was higher during correct than in error trials,

also when separating for trajectory replay ending ahead and

behind the animal (total: p = 0.0015, ahead: p = 0.006, behind:

p = 0.02, Wilcoxon signed-rank test, Bonferroni-Holm correc-

tion; Figures 6A and 6C). This is in agreement with previous re-

ports that the hippocampus shows more coordinated replay

before correct trials than before error trials (Singer et al., 2013).

Separating ahead and behind trajectory replays in the center

for the mPFC showed that while there were more ahead trajec-

tories during error trials, there were more behind trajectories

during correct trials (total: p = 0.05, ahead: p = 0.006, behind:

p = 0.003, Wilcoxon signed-rank test, Bonferroni-Holm correc-

tion; Figures 6A and 6C), suggesting that ahead and behind tra-

jectories in the mPFC might serve different functions.

Although we detected replay events with linearized rate maps

that do not differentiate between the two start or the two goal

arms, we nonetheless attempted to determine whether trajec-

tory replay events at the center and goal preferentially replayed

the current or previous goal arm. After all, with our mPFC data

we could differentiate between the two goal arms with 76%

accuracy (Figure S2F). At the center, replay events ending ahead

of the animal of neither brain area were biased toward the past or
162 Neuron 106, 154–165, April 8, 2020
upcoming goal arm (HPC, previous: p = 0.99, current: p = 0.36;

mPFC, previous: p = 0.98, current: p = 0.5, binomial test; Fig-

ure S6E). At the goal, replay events in the HPC and mPFC

showed a strong preference for the current goal arm (HPC,

previous: p < 0.0001, current: p < 0.00001; mPFC, previous:

p = 0.004, current: p < 0.00001, binomial test; Figure S6F).

DISCUSSION

A number of past studies found that mPFC neurons display

place-related firing (Fujisawa et al., 2008; Hok et al., 2005; Zie-

linski et al., 2019). We too found that mPFC neurons can hold

spatial information. However, in our case, mPFC cells primarily

represented a generalized form of space; instead of coding for

specific locations, mPFC neurons encoded the relative posi-

tion between the start and the goal. The mPFC might therefore

have a role in the generalization of places with similar meaning

(Yu et al., 2018). The symmetric shape of the maze used in this

study and the similar task-related meaning of the two start and

two goal arms might have made the symmetric firing proper-

ties of mPFC cells more evident than other tasks or mazes

would have. At the population level, the mPFC could also

encode goal arm identity. However, goal arm decoding accu-

racy was only 76%, and population vector analysis indicated

that mPFC assembly patterns were very similar in the two

goal arms. Therefore, either a small, independent population

of mPFC cells held information about the different goals or

cells signaled goal identity with small firing rate deviations.

Nevertheless, two independent coding mechanisms were

present in the mPFC encoding relative position and goal

identity.

We found that during awake immobility, the mPFC can reacti-

vate places distant from the actual position of the animal. This is

in line with a previous study reporting that the mPFC can recall

reward locations that are remote from the animal, resembling

replay in the hippocampus (Mashhoori et al., 2018). However,

we demonstrated that awake mPFC replay can go beyond

reactivation of single non-local positions. The mPFC replayed

temporally organized sequences of positions recapitulating

generalized behavioral trajectories. Such replay occurred not

only during rule switching but also during stable performance

of the spatial or cue-guided rule on the plusmaze. ThemPFC tra-

jectory replay that we detected progressed not only in the for-

ward order but also in the reverse order, indicating that it is not

a mere recapitulation but an abstraction of the original experi-

ence. Indeed, our findings on the relationship of mPFC replay

with rule-switching performance and its increase during error tri-

als suggest that temporally organized replay in themPFCmay be

actively involved in rule switching.

Whatmight be the role ofmPFC trajectory replay during awake

immobility in the rule-switching task? To address this question,

one has to keep in mind that, according to our data, the mPFC

primarily retains only part of the spatial information found in hip-

pocampal representations; it produces a trajectory-independent

representation by generalizing between the two start and two

goal arms. Therefore, since the fundamental elements

comprising the task entail running down a start arm and, at the

maze center, choosing one of the goal arms, the mPFC might



tease out the elements common to both rules. The mPFC holds

the neurobiological basis of schemas that are higher-level frame-

works of knowledge onto which new, related information can be

rapidly assimilated (Tse et al., 2007). In the present task, the gen-

eral task structure may be represented in the mPFC as a schema

onto which the new rule can be mapped. We found that the

occurrence of mPFC trajectory replay at the goal and those tra-

jectory replays at the center pointing toward the goal were

increased on error trials. Moreover, before the animal switched

to the new rule, the overall occurrence rate of mPFC replay posi-

tively correlated with how fast the animal switched. Therefore,

during periods before the animal adapts to the new rule, replay

of the general task structure might aid the determination of the

specific rule currently in place. Alternatively, since positions of

the current goal arm were reactivated in a significant fraction

of mPFC replay events at the goal, mPFC trajectory replay may

constitute an evaluation of the choice and trial outcome (Nar-

ayanan and Laubach, 2008; Passecker et al., 2019; Sul et al.,

2010). A single mPFC replay event at the goal, however, did

not immediately result in better performance on the next trial,

indicating that mPFC replay may rather be part of an evidence

accumulating process spanning several trials and not reflective

of a moment of sudden insight (Durstewitz et al., 2010). That

goal replay in the HPC negatively correlated with switching per-

formance and was increased during error trials suggests that

HPC goal replay may only signal errors and does not have a

direct role in facilitating rule switching.

In the present study, trajectory replay rate of the HPC and

mPFC at the goal were oppositely correlated with rule-switch-

ing performance, and HPC and mPFC goal-directed (i.e.,

ending ahead of the animal) trajectory replays at the center

oppositely correlated with error trials. Moreover, we did not

find a temporal correlation between trajectory replay events

in the HPC and mPFC. This was unexpected, since mPFC

replay so far was mostly studied in temporal alignment with

hippocampal SWRs, periods of enhanced hippocampal replay

(Jadhav et al., 2016; Peyrache et al., 2009; Shin et al., 2019).

However, replay in areas outside the hippocampus does not

necessarily have to be linked with replay in the hippocampus.

For example, independent replay has also been reported for

the entorhinal cortex, a structure that is neighboring the hippo-

campus (O’Neill et al., 2017). It is therefore possible that mPFC

replay serves different functions depending on whether it

occurs independently or together with hippocampal replay.

Synchrony between hippocampal and cortical replay may

thereby have a consolidative role (Diekelmann and Born,

2010; Ji and Wilson, 2007), whereas independent replay may

serve computational processes within the mPFC. Our findings

therefore point to a complementary role of trajectory replay

occurring in the mPFC and hippocampus during rule switching

and in the subsequent maintenance of updated rules. None-

theless, since mPFC trajectory replay significantly co-occurred

with hippocampal SWRs, it may still be influenced by hippo-

campal activity. Furthermore, there is also the possibility that

structures upstream of the mPFC, such as the medial entorhi-

nal cortex, which can exhibit replay that is independent from

that of the hippocampus (O’Neill et al., 2017), have an influ-

ence on mPFC replay.
Altogether, the presence of sequential reactivation of locations

in the mPFC during the awake state indicates that temporally

organized replay is a neural computation mechanism common

to different brain areas (Ji and Wilson, 2007; Ólafsdóttir et al.,

2016; O’Neill et al., 2017). When a higher-order organization

was found for hippocampal replay, it opened new possibilities

in which hippocampal mnemonic computations could be

analyzed. Similarly, the discovery of awake trajectory replay in

the mPFC and its relevance to the performance of rule switching

might offer new ways in which mPFC function can be

investigated.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Male Long-Evans rats Janvier, France RjOrl:LE

Software and Algorithms

KlustaKwik Harris et al., 2000 http://klustakwik.sourceforge.net

Python Python https://www.python.org

Other

12 mm tungsten wires California Fine Wire Cat # CFW0010954

Headstage amplifier Axona, St. Albans, UK http://www.axona.com/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jozsef

Csicsvari (jozsef.csicsvari@ist.ac.at). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Four male Long-Evans rats (300-350 g, 2-4 months of age; Janvier, France) were used in this study. The animals were housed in a

separate room on a 12 hour light/dark cycle and were taken to the recording room each day prior to the experiments. Animals shared

a cage with littermates before surgery. All procedures involving experimental animals were carried out in accordance with Austrian

animal law (Austrian federal law for experiments with live animals) under a project license approved by the Austrian Federal Science

Ministry (License number: BMWFW-66.018/0015-WF/V3b/2014).

METHOD DETAILS

Surgery
Rats were implanted with microdrives housing 32 individually-movable tetrodes, arranged into three bundles targeting the right

dorsal hippocampus (specifically dorsal CA1, HPC) and left and right medial prefrontal cortex (specifically prelimbic area, mPFC).

The HPC bundle consisted of 16 tetrodes and the two mPFC bundles of 8 tetrodes each. Tetrodes were fabricated out of four

12 mm tungsten wires (California Fine Wire Company, Grover Beach, CA) that were twisted and then heated to bind into a single

bundle. Tetrode bundle lengths were cut so that the two mPFC bundles were 1-1.5 mm longer than the HPC bundle. The tips of

the tetrodes were gold-plated to reduce the impedance to around 300 kU. Before surgery the animal was put under deep anesthesia

using isoflurane (0.5%–3%), oxygen (1–2 L/min), and an initial injection of buprenorphine (0.1 mg/kg) and ketamine/xylazine (7:3

ketamine (10%) and xylazine (2%), 0.05ml/100 g). Craniotomies were drilled above the HPC (AP: �2.50 to �4.50, ML: �1.2 to

�3.6) and above the mPFC across the sinus (AP: 4.60 to 2.50, ML: 0 to ± 0.8). Six anchoring screws were fixed onto the skull and

two ground screws were positioned above the cerebellum. After dura removal the tetrode bundles we centered above their respec-

tive craniotomies and lowered into the brain at a depth of �2 mm for the mPFC and �1 mm for the HPC. The exact depth of mPFC

tetrode implantation was noted to ensure later lowering into the target area. Tetrodes and craniotomies were coated in paraffin wax

and the microdrive was anchored to the skull and screws with dental cement. The analgesic meloxicam (5 mg/kg) was given up to

three days after surgery and the animal was allowed one week recovery. Thereafter, tetrodes were gradually moved in 50-200 mm

steps into the HPC pyramidal cell layer and mPFC.

Plus maze Apparatus and Task
Following the recovery period, animals were food-restricted with ad libitum access to water and accustomed to the plus maze and

rest box. The plus maze was elevated (80 cm) and consisted of four arms (85 cm long and 12 cm wide), referred to as north, east,

south and west, and a connecting center. The animal was placed in one of the two start arms (north or south) and had to collect a

food reward (MLab rodent tablet 20mg, TestDiet, Richmod, USA) in one of the two goal arms (east or west), depending on the

rule employed. Access to the arm not chosen as the start was restricted, so that the maze became T-shaped. A small light at the

end of one of the two goal arms was switched on. Which arm was chosen as the start and light-on arm was chosen pseudorandomly
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for every trial, ensuring that an armwas not chosenmore than three consecutive times. Once the animal reached a goal arm and�5 s

passed, the animal wasmanually picked up and placed in the rest box before commencing to the next trial after a delay of�10 s. The

animal had to retrieve the reward based on a spatial or response (light) rule. During the spatial rule the reward was always placed in

either the east or west arm, while during the response rule the reward was placed in the light-on arm. Importantly, also during the

spatial rule one of the two arms was lit, but did not necessarily indicate the location of reward. To prevent an odor-guided strategy

pellet dust was scattered along themaze and pellet-filled cups invisible to the animal placed under both goal arms. On each recording

day, the animal underwent behavioral blocks as follows: rest, rule 1 (remote recall), rest, pre-switch, switching, post-switch, rest, rule

2 (recent recall), rest. The analysis presented here was only performed on data recorded during the pre-switch, switching and post-

switch blocks. Therefore only these blocks will be described in detail here. During the pre-switch block the animal had to collect

reward based on the last rule of the previous day until reaching the performance criterion (see below). Then the rule was changed

and reward had to be collected based on the new rule. The change in rule was not announced to the animal, which had to switch

to the new rule through trial-and-error until performing to criterion. Trials performed after the rule change, but before the animal

reached good performance comprised the switching block, while the post-switch block comprised all trials from the beginning of

good performance (see Methods-Behavior for definition of good performance). The animal had to perform cross-modal switches,

i.e., switches from spatial to light or light to spatial rule, never between the two spatial rules. While correct performance of a spatial

rule involves two trajectories (e.g., go-east rule: north to east and south to east), correct performance of the light rule can involve any

of the four trajectories. Therefore, the performance criterion for the spatial rule was set to 12/15 and for the light rule to 24/30 correct

trials, ensuring similar number of light rule trials where the animal performed trajectories that matched those of the spatial rule.

Histology and Reconstruction of Recording Positions
After the final recording day tetrodes were not moved. Animals were administered ketamine/xylazine (7:3 ketamine (10%) and

xylazine (2%), 0.1ml/100 g) and overdosed with pentobarbital (300mg/ml) before being transcardially perfused with 0.9% saline

followed by 4% formaldehyde. Brains were extracted and stored in 4% formaldehyde. On the same day brains were transferred

into 30% sucrose solution until sinking for cryoprotection. Finally, brains were quickly frozen, cut into coronal sections with a cryostat

(50-60 mm), mounted on glass slides and stained with cresyl violet. The positions of tetrode tips were determined from stained

sections and cells recorded from tetrodes outside mPFC were excluded from analysis. For cells recorded from HPC tetrodes the

presence of SWRs in the field recordings served as inclusion criteria.

Data Acquisition
The extracellular electric signals from tetrodes were pre-amplified using a headstage (4 x 32 channels, Axona Ltd, St. Albans,

Hertfordshire, UK). The amplified local field potential and multiple-unit activity were continuously digitized at 24 kHz using a 128-

channel data acquisition system (Axona Ltd). Two red LED bundles mounted on the preamplifier head-stage were used to track

the location of the animal. Every day before recording, HPC tetrodes were moved optimizing the yield of recorded cells. Additionally,

mPFC tetrodes were lowered every day by �30-50 mm to ensure recording of a new population of cells.

Spike Sorting and Unit Classification
Clustering of spikes and unit isolation procedures were described previously (Csicsvari et al., 1998). Briefly, the raw data was re-

sampled to 20 kHz and the power in the 800-9000 Hz range was computed for sliding windows (12.8 ms). Action potentials with a

power of > 5 standard deviations (SD) from the baseline mean were selected and their spike features extracted with principal com-

ponents analysis. Action potentials were then grouped into multiple putative units based on their spike features using an automatic

clustering software (http://klustakwik.sourceforge.net; Harris et al., 2000). The generated clusters were thenmanually refined using a

graphical cluster-cutting program and only units with clear refractory periods in their autocorrelation, well-defined cluster boundaries

and stability over timewere used for further analysis. An isolation distance (based onMahalanobis distance) was calculated to ensure

that spike clusters did not overlap (Harris et al., 2000). Putative excitatory pyramidal cells and inhibitory interneurons were discrim-

inated using their auto-correlograms, firing rates and waveforms. In our analysis we included 1025 HPC and 817 (of which 368 right

and 449 left hemisphere) mPFC pyramidal cells.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavior
The analysis presented here was performed on data recorded during the pre-switch, switching and post-switch blocks. All trials

before the rule change comprised the pre-switch block. Trials performed after the rule change, but before the animal reached

good performance comprised the switching block. The beginning of good performance (bgp) was defined as the center index after

rule change where the error rate over five consecutive trials dropped to zero.

bgp = argmint ˛ftrials > switchg

( X2

k = �2

errorðt + kÞ = = 0

)
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Linearized Position
To linearize the behavior of the animal, we calculated the distance from the center from the 2D spatial position of the animal. This way

a ‘‘V-shaped’’ positive function for each trial was obtained. For each position before the center (i.e., before the global minimum) we

subtracted the minimum and then changed the sign. Then, 100 was added to every position to obtain a positive measure of the rela-

tive position of the animal between start (0 cm) and goal (200 cm). The center corresponded to 100 cm.

Linearized Firing Rate Maps
The linearized 1Dmaze was divided into 20 spatial bins of 10 cm. Using the linearized position, an occupancy map was generated by

computing the amount of time the animal spent in each spatial bin during running periods (speed filtered > 5 cm/s). We then counted

the number of spikes a cell emitted in each spatial bin (also speed filtered, > 5 cm/s) and divided that number by the occupancy time.

We then smoothed these vectors with a Gaussian filter with a SD of 1 bin.

Population Vector Similarity
For each cell a rate map was computed separately from spiking data from each condition (e.g., south arm, correct trials,...). Rate

maps for correct and error trials were computed from goal arm spiking data only. For each condition, rate maps of all cells in a given

session were stacked along the z axis to obtain a set of population vectors, one for each spatial bin Then, for a population vector pair

(i.e., one from each condition) for a given spatial bin the Pearson correlation was computed to quantify their similarity.

Bayesian Decoding
The position of the animal was decoded using a Bayesian decoding algorithm on the spiking vectors of cells and their expected firing

rate given by their rate maps (Zhang et al., 1998). Spiking neurons were assumed to follow a Poissonian law and act independently of

each other. The position of the animal in a given time window of length t is denoted as x. The number of spikes of one particular cell is

denoted as si and the activity of all cells considered in the given time window as s= fs1; s2;.g. For each cell i and position x, we

obtain the measured firing rate lix from the rate maps. Using the assumptions and the introduced notation we have:

P
�
sj x

�
=
Y
i

Pðsi j x Þ =
Y
i

Poiss
�
si

�� lix t�
And, using the Bayesian rule:

P
�
x
��s� = P

�
s
�� x� PðxÞ = PðsÞ

For our computations we used a flat prior (i.e., PðxÞ was uniform). The term PðsÞ did not need to be computed because one can

enforce
P
x
Pðx �� sÞ = 1. The decoded position then is:

BD sð Þ= argmaxx P
�
x
�� s�= argmaxx

Y
i

Poiss
�
si

�� lixt�
The decoded position was the position with themaximum likelihood. For a givenwindow, the likelihoods for all positionswere normal-

ized by dividing each by the maximum likelihood of that window. However, in cases where we needed to consider the posterior as a

properly normalized probability distribution, we normalized the likelihood by the sum. The same estimated firing probabilities of each

cell in each bin were used for the pre-switch, switching and post-switch blocks.

Confusion Matrix
The confusion matrix was computed as follows: given a vector of real positions rp and a vector of decoded positions dp with same

length N, both binned into bins of 10 cm size, we initialized a 20 3 20 matrix ðCMÞ to zero where rows corresponded to the real

position and the columns corresponded to the decoded position and filled it:

CM i; j½ �=
XN
k = 0

rpk = = ið Þ and dpk = = jð Þ

Each row was then normalized so the sum of its elements equals 1.

Cross-validation
The decoding quality of a neural ensemble was tested on rate maps constructed from data that was not used to train the model. For

spatial coding analysis, only running periods were considered (speed > 5 cm/s) and two thirds of the trials were used to compute the

rate maps and the remaining third was used to decode the position of the animal. For analysis on non-local replay, rate maps were

constructed from running (speed > 5 cm/s) and immobility (speed < 5 cm/s) periods and using all trials except for the one on which

positional decoding was performed. For trajectory replay analysis during immobility periods, rate maps were constructed from

running periods. The decoding error was the absolute value of the difference between recorded and decoded position.
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Decoding Windows
The spiking vector on which positional decoding is performed can be chosen in different ways. The standard approach is to fix the

time lengths of spiking vectors. Another approach is to select spiking vectors containing a minimum amount of spikes, without fixing

the time, or selecting a minimum number of cells spiking. We binned the spiking activity of each cell in time bins of 25.6 ms (i.e., sam-

pling-window), aligned with the behavior tracking. The 25.6 ms spiking vectors were then summed up until the request of a certain

time window length, number of spikes or number of cells participating was met. We used fixed time windows of 256 ms for the

detection of non-local positions during immobility. For the detection of trajectory replay we usedwindowswith fixed number of spikes

(i.e., spiking-window). The number of spikes contained in a window was selected for every session separately as follows: we

computed the average decoding error during running periods (using the cross-validation method as described above) and deter-

mined the minimum number of spikes that allowed us to decode the position of the animal with a decoding error of less than 30 cm.

Decoding of Trial Outcome and Goal Arm Identity
We performed Bayesian decoding to determine whether HPC and mPFC firing codes for correct and error trials. First, we computed

ratemaps of randomly selected 80%of the spiking data occurring in the goal arms, separately for correct and error trials. Then for the

remaining 20% of goal arm spiking data we performed decoding with the correct and error rate maps. The rate map that resulted in

the highest likelihood determined the decoding outcome. The decoding outcome was then compared with the actual trial outcome

and the percentage of trials where the decoding matched the trial outcome was plotted. Bayesian decoding was also performed to

determine whether HPC and mPFC firing codes for goal arm identity (i.e., east or west). The same procedure as above was applied,

just that rate maps were constructed either from east or west spiking data.

Trajectory Score
To ensure that the replayed trajectories observed during immobility were not statistical noise of neurons, we computed a trajectory

score that consisted of a decoding probability and smoothness score. Each immobility period was divided into spiking-windows and,

using the Bayesian algorithm, we obtained a normalized likelihood function on the binned linearized positions for each spiking-

window. Every four consecutive spiking-windows (i.e., the first three windows of a four spiking-window event will be the same as

the last three windows of the previous event) that passed the continuity (no jumps > 6 bins) and speed (absolute speed > 20 cm/

s) criteria were analyzed and forward and backward replaying trajectories were detected separately. The decoding probability score

is a measure based on a previous study (Xu et al., 2019). Starting from the first window of a four-window event, we computed the

probability of transitioning to the next with a velocity given by the slope of a line fitted on the four decoded positions. We multiplied

the likelihood with a Gaussian kernel that moved by the corresponding amount of spatial bins to the left (backward) or to the right

(forward). If the limit was reached (< 0 or > 20) the kernel was set to zero.We computed this measure for all windows of a four-window

event and averaged the result to obtain the decoding probability score ranging between 0 (least optimal) and 1 (most optimal). The

smoothness score measures how probable it is to find a permutation of the given four spiking-window event that has a distance

between neighboring windows smaller than the original event. In the case of four or five windows, 24 or 120 permutations are

possible. The number of permutations that had an average distance between neighboring events smaller than the real event, was

divided by the total number of permutations, yielding a number from 0 (most optimal) to 1 (least optimal). For events longer than

fivewindows, since it becomes computationally prohibitive to compute all the permutations, we randomly sampled 100 permutations

and computed the score in the same way on those 100 samples. The smoothness score was then subtracted from the decoding

probability score to obtain our final trajectory score. This way we penalized events that showed non-sequential activity.

Shuffling Procedure
The trajectory score of each four (or longer) spiking-window event was compared to its own shuffled distribution. The shuffled

distribution was generated by decoding the same event (as described above), but this time using 200 shuffled rate maps, and

computing 200 trajectory scores. We used a place field rotation shuffling. Since we are working with 1D rate maps, this entails draw-

ing a random integer between 3 and 17, and wrapping the map of each single neuron (independently) by that number of bins around

the origin. For some analyses we additionally employed a cell identity shuffling procedure, where the cell labeling of rate maps was

permutated but otherwise were kept intact.

Trajectory Selection and Concatenation
Those four spiking-window events that had a unified trajectory score above the 95th percentile of their own shuffled distribution were

selected. A given significant four spiking-window event was extended by the consecutive four spiking-window event (which overlaps

by three windows) if the consecutive event also had a significant trajectory score, the speed and jump size matched our criteria and

the newly calculated trajectory score still passed the 95th percentile of its own shuffled distribution. This way we extended a four

spiking-window to a five spiking-window event and the same procedure was then performed on the extended event.

Cross-correlation
Cross-correlation on HPC and mPFC trajectory replay events was performed to investigate their temporal alignment. For each brain

area we considered a time series, aligned with behavior (25.6ms), filled with zeros in case of immobility, ones for significant trajectory
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replay, and NaNs otherwise. The mPFC time series was incrementally shifted to the left or right relative to the HPC time series until a

maximum of 20 bins. For each shift, the Pearson’s correlation between the two time series was computed excluding the NaNs (and

thus mobility and non-task periods). To compare the cross-correlation to shuffled data, trajectory events were randomly shifted for-

ward or backward within their immobility period 100 times, and each time a cross-correlation computed.

Additional Quantification of Linear Replay Quality
Additionally to the trajectory score, we performed further analyses to quantify linear replay with methods employed in previous replay

studies (Davidson et al., 2009; Gupta et al., 2010). We will briefly outline the main idea and fundamental steps of the algorithms and

then refer the reader to the original publications for further details. The algorithm in the Gupta et al. study consists of assigning one

discrete position to each cell, which corresponds to the maze position with the highest firing rate observed during running. For each

candidate replay event the spiking of cells is divided into 25.6ms timewindows. Then, for each spike in eachwindow, one determines

if the spikes in the subsequent three time windows correspond to maze positions that precede or succeed the position encoded by

the current spike and then averages the outcome. Therefore, this score measures the propensity of sequential firing of cells in

consecutive short time windows, separately for forward and reverse replay.

To compute the score as in the Davidson et al. study, for each candidate replay event the posterior probability over linear bins was

computed for each time window. These are stacked to form a T x Nmatrix, where T is the number of time windows and N the number

of spatial bins. Then, all possible linear trajectories spanning the entire time by space matrix with a minimum speed are considered.

Here, were considered speeds in the range of 5 to 40 cm/step, both forward and reverse. For each of the above-mentioned trajec-

tories, all those probabilities were summed that were crossed by the selected trajectory or were less than 10 cm away, for a total of

20 cm. Only the sum of probabilities of the best scoring trajectory was returned.

Decoding of Goal Arms within Replay Events
Although replay events were detected with 1D rate maps, we nonetheless tried to determine whether a trajectory replay event reca-

pitulated the current or previous trial’s goal arm. The 2D position was decoded for every spiking-window of a replay event. If at least

two windows encoded a goal arm, the goal arm identity that was being replayed was determined by a majority rule.

Population Firing Rate during Replay
The population firing was binned into 25.6 ms windows and Z-scored relative to the firing in the entire session. Then for every replay

event, the beginning of the spiking-window with the highest firing rate was determined and the population firing rate vector extracted

within an interval of �460.8 ms and +460.8 ms (i.e., 18 bins before and after the spiking-window with highest firing rate). The mean

and standard error of the mean (SEM) over all extracted firing rate vectors was plotted.

Oscillation Analyses
The local field potential signal (5 kHz) of one channel per HPC tetrode was subtracted with the signal of a reference channel that did

not contain SWRs. For steps of 20 ms, 240 ms chunks of the signal were Fast-Fourier transformed and band-pass filtered between

150 and 250 Hz. The root mean square was then computed to obtain the ripple-band power for that channel. The mean ripple-band

power was obtained by averaging over all channels. SWR events were detected by detecting periods where the ripple-band power

was above 5 SD of the mean and the start and end times were also determined (1.5 SD). The same procedure was done for cortical

ripples, however right hemisphere mPFC channels were subtracted with the signal of a left hemisphere channel and the signal was

filtered between 100 and 150 Hz (Khodagholy et al., 2017). To obtain the gamma power the signal was filtered between 30 and 90 Hz.

No reference channel was subtracted from the signal and for mPFC gamma power only right hemisphere channels were considered.

For every replay event an immobility period of the same length was randomly selected and the respective type of network activity

computed over these periods for comparison.

Behavioral Correlates
The immobility time in a trial or experimental block can vary depending on how long it takes for the animal to reach and consume the

reward or to make a decision. We therefore computed a trajectory rate for every trial (i.e., number of trajectory replay events divided

by the immobility time) instead of counting the number of trajectories per trial. We computed a trajectory rate separately for the center

and goal area (i.e., at a linearized position of < 110 cm or > 110cm, respectively). For the center, trajectory replay events were also

divided into ahead and behind replaying trajectories. Depending on the analysis, an average rate was computed for every session

from trials within the switching or within the switching and the post-switch block. When correlating the trajectory rate with the number

of trials needed to switch to the new rule, we employed a logarithmic transformation of the trajectory rate. Insets in correlation figures

show boxplots of 100 r values computed from 100 correlations of 80% randomly sampled data points of the data. The number of

immobility periods was computed by counting the number of periods the animal had a speed of lower than 5 cm/s and dividing

that number by the total number of trials. The rate of SWR events was computed for every trial by counting the number of SWR events

during immobility periods and normalizing by the total time spent immobile during that trial. An average SWR event rate per trial was

then computed.
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Statistical Analysis
Analyses were performed using custom written Python scripts (https://www.python.org). Non-parametric and two-tailed tests were

used throughout unless stated otherwise. For paired comparisons Wilcoxon signed-rank test was used, while Mann-Whitney U test

was used for unpaired data. For the analysis on trajectory replay rate in error and correct trials, the Wilcoxon signed-rank test was

usedwith the Bonferroni-Holm correction formultiple comparisons. For othermultiple group testing the Kruskal-Wallis test was used.

The two-sample Kolmogorov-Smirnov test was used to compare distributions. A one-sample t test tested for changes in firing rates.

Correlations were performed by calculating the linear least-squares regression and the significance was determined using

Spearman’s rank-order correlation. Correlations determining population vector similarities and cross-correlations were performed

with Pearson’s correlation. All statistical tests are reported in the text and appropriate figure legends (*p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.00001). In bar plots the mean and SEM are shown.

DATA AND CODE AVAILABILITY

Data and software used in this study will be made available upon request by contacting the lead contact, Jozsef Csicsvari (jozsef.

csicsvari@ist.ac.at).
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